

# Molecular and Crystal Structures of Adducts $(\text{Cp}_2\text{YCl})_2\text{L}$ ( $\text{L} = \text{2THF, DME, 1,4-Dioxane}$ )

A. I. Sizov, T. M. Zvukova, Z. A. Starikova, and B. M. Bulychev

Department of Chemical Technology and New Materials

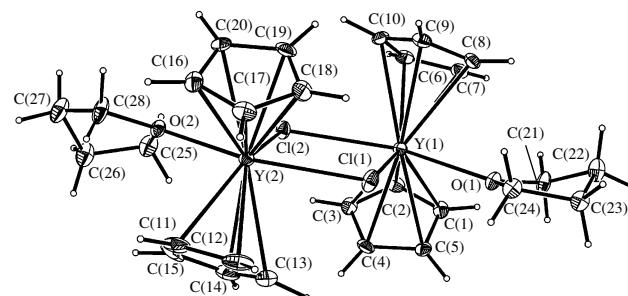
e-mail: b.bulychev@highp.chem.msu.ru

Received February 6, 2006

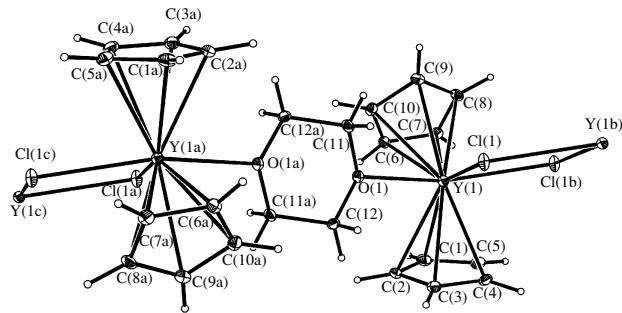
**Abstract**—The adducts  $[\text{Cp}_2\text{Y}(\mu\text{-Cl})_2]_2 \cdot 2\text{THF}$  (**5**),  $\{[\text{Cp}_2\text{Y}(\mu\text{-Cl})_2]_2 \cdot 1,4\text{-dioxane}\}_n$  (**6**), and  $\text{Cp}_2\text{Y}(\text{DME})(\mu\text{-Cl})(\text{Cl})\text{YCp}_2$  (**7**) have been synthesized and studied by X-ray crystallography. In **5**, the  $(\text{Cp}_2\text{YCl})_2$  moiety is coordinated to two THF molecules ( $d_{(\text{Y}-\text{O})} = 2.478 \text{ \AA}$ ); in **6** the  $(\text{Cp}_2\text{YCl})_2$  dimers are linked by 1,4-dioxane to form a polymer chain ( $d_{(\text{Y}-\text{O})} = 2.601 \text{ \AA}$ ). In asymmetric adduct **7**, the DME molecule is bound through both O atoms to the same Y atom ( $d(\text{Y}-\text{O}) = 2.382$  and  $2.448 \text{ \AA}$ ), and one of the chlorine atoms is bridging and the other chlorine atom is terminal.

**DOI:** 10.3103/S0027131407020125

Metallocene derivatives of rare-earth elements and yttrium are Lewis acids and readily form adducts with donor ligands. The structure of these adducts is determined to a great extent by the steric properties of the metallocene moiety and also depends on the type of O-ligand [1]. For example, dimeric yttrium chloride with bulky  $\text{C}_5\text{Me}_5$  groups  $(\text{C}_5\text{Me}_5)_2\text{Y}(\mu\text{-Cl})\text{YCl}(\text{C}_5\text{Me}_5)_2$  (**1**) reacts with L to form mononuclear adducts  $(\text{C}_5\text{Me}_5)_2\text{YCl} \cdot \text{L}_n$ , where n varies as a function of the structure of L [1]. As distinct from **1**, complexes with unsubstituted  $\text{C}_5\text{H}_5$  groups do not dissociate under the action of L, such as THF; rather they form dimeric adducts, for example,  $[(\text{Cp}_2\text{Ln}(\mu\text{-Cl})_2]_2 \cdot \text{L}_2$  ( $\text{Cp} = \text{C}_5\text{H}_5$ ,  $\text{Ln} = \text{Nd}$  (**2**) [2] and  $\text{Er}$  (**3**) [3]).


Assuming that a change in the type of L can considerably influence the bonding in the complexes with unsubstituted Cp groups, we synthesized and studied adducts of the dimer  $[(\text{Cp}_2\text{Y}(\mu\text{-Cl})_2]_2$  (**4**) with different L's. Here, we report the data on three adducts:  $(\text{Cp}_2\text{YCl})_2 \cdot (\text{C}_4\text{H}_8\text{O}_2)_2$  (**5**),  $[(\text{Cp}_2\text{YCl})_2 \cdot \text{C}_4\text{H}_8\text{O}_2]_n$  (**6**), and  $\text{Cp}_2\text{Y}(\text{C}_4\text{H}_{10}\text{O}_2)(\mu\text{-Cl})(\text{Cl})\text{YCp}_2$  (**7**), obtained by the reaction of **4** with THF, 1,4-dioxane, and 1,2-dimethoxyethane (DME), respectively.

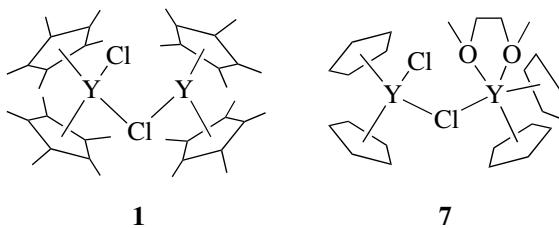
## RESULTS AND DISCUSSION


It is known that, in dimer **4** [4], each yttrium atom ( $d^0$  state) has a vacant orbital and is able to coordinate an extra ligand [5]. Therefore, the reaction of **4** with THF yields adduct **5** (Fig. 1), in which the  $\text{Y}(\mu\text{-Cl})_2\text{Y}$  bond persists and the yttrium atoms each coordinate a THF molecule, thus becoming coordinatively saturated ( $\text{CN} = 9$ ). The structure of adduct **5** resembles the structures of adducts **2** and **3**, and many structural parameters of these complexes (for example,  $\text{ClErCl}$ ,  $72.2^\circ$ ;

$\text{Er}-\text{Cl}$ ,  $2.666$ ,  $2.797 \text{ \AA}$ ;  $\text{Er}-\text{O}$ ,  $2.590 \text{ \AA}$ ;  $\text{Er}\cdots\text{Er}$ ,  $4.42 \text{ \AA}$  [3]) are rather close to those of **5**.

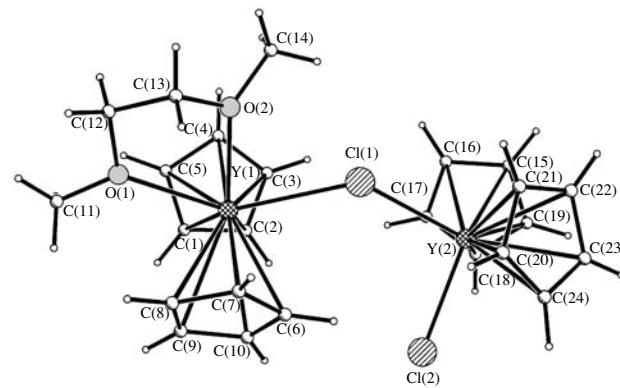
In adduct **6**, obtained by the reaction of **4** with 1,4-dioxane, the same type of bonding as in **5** is observed. Each Y atom in **6**, in addition to the Cp ligands, is coordinated to two Cl atoms and the O atom lying in the bisector plane of the  $\text{Cp}_2\text{Y}$  moiety (Fig. 2). The  $(\text{Cp}_2\text{YCl})_2$  dimers in **6** are linked in a chain by 1,4-dioxane molecules. The latter adopt a chair conformation and act as bidentate nonchelating ligand. Comparison of structures **5** and **6** shows that the distance  $d(\text{Y}\cdots\text{Y})$  in **5** ( $4.418 \text{ \AA}$ ) is  $0.04 \text{ \AA}$  longer than in **6** ( $4.376 \text{ \AA}$ ) (in **4**,  $d(\text{Y}\cdots\text{Y}) = 4.069 \text{ \AA}$  [4]). Conversely,  $d(\text{Y}-\text{O})$  in **5** ( $2.478 \text{ \AA}$ ) is  $0.12 \text{ \AA}$  shorter than in **6** ( $2.601 \text{ \AA}$ ). This points to a greater strength of the Y–THF bond and is consistent with the higher donor properties of THF as compared to those of 1,4-dioxane [1].




**Fig. 1.** Structure of adduct **5**. Selected bond angles ( $\text{\AA}$ ) and bond angles (deg):  $\text{Y}(1)-\text{Cl}(1)$ ,  $2.661(1)$ ;  $\text{Y}(1)-\text{Cl}(2)$ ,  $2.810(1)$ ;  $\text{Y}(1)-\text{O}(1)$ ,  $2.478(2)$ ;  $\text{Y}(1)-\text{Cp}(1)$ ,  $2.382(2)$ ;  $\text{Y}(1)-\text{Cp}(2)$ ,  $2.389(2)$ ;  $\text{Y}(2)-\text{Cl}(1)$ ,  $2.793(1)$ ;  $\text{Y}(2)-\text{O}(2)$ ,  $2.452(2)$ ;  $\text{Y}(1)\cdots\text{Y}(2)$ ,  $4.418(1)$ ;  $\text{Cl}(1)\text{Y}(1)\text{Cl}(2)$ ,  $72.71(2)$ ;  $\text{Cl}(1)\text{Y}(1)\text{O}(1)$ ,  $75.97(6)$ ;  $\text{Cp}(1)\text{Y}(1)\text{Cp}(2)$ ,  $127.5$ ;  $\text{Y}(1)\text{Cl}(1)\text{Y}(2)$ ,  $108.19(3)$ .



**Fig. 2.** Structure of a fragment of the polymer chain of adduct **6**. Selected bond lengths (Å) and bond angles (deg): Y(1)–Cl(1), 2.693(1); Y(1)–Cl(1b), 2.789(1); Y(1)–O(1), 2.601(2); Y(1)–Cp(1), 2.368(2); Y(1)–Cp(2), 2.402(2); Y(1)–Y(1b), 4.376(1); Cl(1)Y(1)Cl(1b), 74.08(2); Cl(1)Y(1)O(1), 71.72(4); Cl(1b)Y(1)O(1), 145.21(4); Cp(1)Y(1)Cp(2), 126.6; Y(1)Cl(1)Y(1b), 106.00(2).


The product of the reaction of **4** with DME (adduct **7**), unlike compounds **5** and **6**, has an unusual asymmetric structure (Fig. 3). Here, the DME molecule is coordinated to the Y(1) atom through both O atoms ( $d(Y-O) = 2.382, 2.448$  Å), which leads to the cleavage of one of the bridging bonds  $Y(\mu-Cl)_2Y$  so that the chlorine atom becomes a terminal atom bonded to the Y(2) atom. It is evident that this bond rearrangement **7** is associated with the strong chelation between DME and yttrium, which takes place readily [6], in contrast to the chelation between 1,4-dioxane and yttrium.

It is worth noting that nonequivalent metal atoms are rarely encountered in dimeric metallocenes and, in this respect, adduct **7** resembles complex **1** [1, 7] (Scheme 1).



**Scheme 1.**

However, whereas both Y atoms in **1** are coordinatively unsaturated (CNs are 7 and 8) ( $C_5Me_5$ , like  $C_5H_5$ , occupies three coordination sites [1]), one of the metal atoms in **7** is coordinatively saturated (CNs are 8 and 9). This fact, along with the higher steric hindrance in **1** ( $d(Y \cdots Y)$  is 5.354 Å in **1** and 5.038 Å in **7**), can account for the difference in activity between **1** and **7** with respect to O-oligands. In particular, complex **1**, as mentioned above, readily dissociates upon its reaction with O-oligands [1]. Adduct **7**, which forms in a DME excess, does not undergo further transformation into two mononuclear molecules  $Cp_2Y(DME)Cl$ , as might be expected taking into account strong metal–DME chelate bonds.



**Fig. 3.** Structure of Adduct **7**. Selected bond lengths (Å) and bond angles (deg): Y(1)–O(2), 2.382(3); Y(1)–O(1), 2.448(3); Y(1)–Cl(1), 2.785(1); Y(2)–Cl(1), 2.657(1); Y(2)–Cl(2), 2.575(1); Y(1)–Cp(1), 2.37; Y(1)–Cp(2), 2.38; Y(2)–Cp(1), 2.36; Y(2)–Cp(2), 2.36; Y(1)–Y(2), 5.038(1); O(2)Y(1)O(1), 65.77(1); Cl(2)Y(2)Cl(1), 98.10(3); Y(2)Cl(1)Y(1), 135.50(5); Cp(1)Y(1)Cp(2), 129.3; Cp(3)Y(2)Cp(4), 129.0.

## EXPERIMENTAL

All operations were carried out in an argon atmosphere or vacuum. Solvents were purified by distillation with sodium benzophenone ketyl.  $(Cp_2YCl)_2$  was synthesized by a known procedure [8].  $^1H$  NMR spectra were recorded on a Bruker DPX300 spectrometer.

**Adduct 5.**  $(Cp_2YCl)_2$  (0.2 g) was dissolved in a mixture of toluene (22 mL) and THF (3 mL) at 20°C, and the solution was evaporated to ~1/3 of the initial volume and left overnight at 18°C. The resulting colorless crystals (0.07 g) were separated, washed with toluene (1 mL), and dried in vacuum.

For  $C_{28}H_{36}Cl_2O_2Y_2$

Anal. calcd. (%): Cl, 10.85; Y, 27.22.

Found (%): Cl, 10.30; Y, 26.85.

$^1H$  NMR (300 MHz,  $C_6D_6$ , 20°C,  $\delta$ , ppm): 6.19 (s, 10H, Cp), 3.45 (br s, 4H,  $CH_2O$ ), 1.27 (br s, 4H,  $C_2H_4$ ). One crystal was selected for X-ray crystallography.

**Adduct 6.**  $(Cp_2YCl)_2$  (0.27 g) was dissolved in a warm (45°C) mixture of toluene (35 mL) and 1,4-dioxane (6 mL), and the solution was allowed to slowly cool (24 h) in a water bath to room temperature. The resulting colorless crystals (0.11 g) were separated, washed with toluene (1 mL), and dried in vacuum.

For  $C_{24}H_{28}Cl_2O_2Y_2$

Anal. calcd. (%): Cl, 11.89; Y, 29.81.

Found (%): Cl, 11.31; Y, 29.44.

$^1H$  NMR (300 MHz,  $C_6D_6$ , 20°C,  $\delta$ , ppm): 6.19 (s, 20H, Cp), 3.36 (s, 8H, dioxane). One crystal was selected for X-ray crystallography.

**Adduct 7** was obtained analogously to adduct **5**. For  $(Cp_2YCl)_2$  (0.2 g) in a mixture of toluene (25 mL) and DME (2.5 mL), 0.06 g of colorless crystals of **7** were obtained.

Experimental details and crystal data of adducts **5**, **6**, and **7**

| Adduct                              | <b>5</b>                       | <b>6</b>                       | <b>7</b>                       |
|-------------------------------------|--------------------------------|--------------------------------|--------------------------------|
| Empirical formula                   | $C_{28}H_{36}Cl_2O_2Y_2$       | $C_{24}H_{28}Cl_2O_2Y_2$       | $C_{24}H_{30}Cl_2O_2Y_2$       |
| FW                                  | 653.28                         | 597.18                         | 599.20                         |
| Crystal size, mm                    | $0.30 \times 0.40 \times 0.55$ | $0.20 \times 0.30 \times 0.40$ | $0.25 \times 0.30 \times 0.35$ |
| Crystal system                      | Monoclinic                     | Triclinic                      | Orthorhombic                   |
| Space group                         | $P2(1)/c$                      | $P-1$                          | $P2(1)2(1)2(1)$                |
| $a$ , Å                             | 15.549(2)                      | 8.175(1)                       | 11.6501(15)                    |
| $b$ , Å                             | 21.263(2)                      | 8.201(1)                       | 13.6572(16)                    |
| $c$ , Å                             | 8.4090(9)                      | 10.346(1)                      | 15.455(2)                      |
| $\alpha$ , deg                      | 90                             | 89.003(2)                      | 90                             |
| $\beta$ , deg                       | 102.651(2)                     | 73.059(2)                      | 90                             |
| $\gamma$ , deg                      | 90                             | 60.284(2)                      | 90                             |
| $V$ , Å <sup>3</sup>                | 2712.7(5)                      | 569.49(10)                     | 2459.0(5)                      |
| $Z$                                 | 4                              | 1                              | 4                              |
| $D$ , g cm <sup>-3</sup>            | 1.600                          | 1.741                          | 1.619                          |
| $\Theta$ range, deg                 | 1.65–27.00                     | 3.82–29.00                     | 1.99–29.00                     |
| Number of unique reflections        | 5879 (2758)                    | 20218 (5783)                   | 21811 (6525)                   |
| Absorption $\mu$ , mm <sup>-1</sup> | 5.323                          | 4.478                          | 4.931                          |
| $R_1$                               | 0.0720                         | 0.0300                         | 0.0827                         |
| $wR_2$ [ $I > 2s(I)$ ]              | 0.0654                         | 0.0540                         | 0.0721                         |

For  $C_{24}H_{30}Cl_2O_2Y_2$ 

Anal. calcd. (%): Cl, 11.83; Y, 29.67.

Found (%): Cl, 11.54; Y, 29.50.

<sup>1</sup>H NMR (300 MHz, C<sub>6</sub>D<sub>5</sub>CD<sub>3</sub>, 20°C,  $\delta$ , ppm): 6.11 (s, 20H, Cp), 3.24 (s, 4H, CH<sub>2</sub>), 3.06 (s, 6H, CH<sub>3</sub>). One crystal was selected for X-ray crystallography.

Details of the X-ray diffraction studies of single crystals of **5**, **6**, and **7** sealed in capillaries and their crystallographic data are listed in the table. The sets of reflection intensities were collected on a Bruker SMART diffractometer with MoK<sub>α</sub> radiation at 120 K. Corrections for absorption were applied with the SADABS program [9]. The structures were solved by direct methods. The non-hydrogen atoms were located

from difference syntheses and refined on  $F_{hkl}^2$  in the anisotropic approximation. The hydrogen atoms were placed in the geometrically calculated positions and refined as riding on their bonded carbon atoms with  $U(H) = nU(C)$ , where  $U(C)$  is the equivalent temperature factor of the corresponding carbon atom and  $n = 1.2$  and  $1.5$  for  $sp^2$  and  $sp^3$  carbon atoms, respectively. All calculations were performed with the SHELXTL PLUS 5 program package [10].

Atomic coordinates and complete structural data are deposited with the Cambridge Crystallographic Data

Center: CCDC no. 293793 for **5**, no. 244037 for **6**, and no. 293792 for **7**.

## REFERENCES

- Evans, W.J., Fujimoto, C.H., Johnston, M.A., and Ziller, J.W., *Organometallics*, 2002, vol. 21, p. 1825.
- Zhongsheng, J., Yongsheng, L., and Wen-Oi, C., *Sci. Sin., Ser. B (Engl. Ed.)*, 1987, vol. 30, p. 1136.
- Ji-Zhu, J., Zhong-Sheng, J., and Wen-Oi, C., *Jiegou Huaxue (J. Struct. Chem.)*, 1992, vol. 11, p. 204.
- Lobkovskii, E.B., Soloveichik, G.L., Bulychev, B.M., and Erofeev, A.B., *Zh. Strukt. Khim.*, 1984, vol. 25, p. 170.
- Lauher, J.M. and Hoffman, R., *J. Am. Chem. Soc.*, 1976, vol. 98, p. 1729.
- Baischl, U., Dell Amico, D.B., Calderazzo, E., et al., *Inorg. Chim. Acta*, 2004, vol. 357, p. 1538.
- Evans, W.J., Rausch, M.D., Hunter, W.E., et al., *Organometallics*, 1985, vol. 4, p. 553.
- Holton, J., Lappert, M.F., Ballard, D.G.H., et al., *J. Chem. Soc., Dalton Trans.*, 1979, no. 1, p. 45.
- Sheldrick, G.M., *SADABS*, v. 2.01, *Bruker/Siemens Area Detector Absorption Correction Program*, Bruker AXS, Madison, WI, USA, 1998.
- Sheldrick, G.M., *SHELXTL*, v. 5.10, *Structure Determination Software Suite*, Bruker AXS, Madison, 1998.